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I. INTRODUCTION

A random graph is a set of nodes that are randomly joined
by links. When there are sufficiently many links, a connected
component containing a finite fraction of all nodes, the so-
called giant component, emerges. Random graphs, with vary-
ing flavors, arise naturally in statistical physics, chemical
physics, combinatorics, probability theory, and computer sci-
encef1–5g.

Several physical processes and algorithmic problems are
essentially equivalent to random graphs. In gelation, mono-
mers form polymers via chemical bonds until a giant poly-
mer network, a “gel,” emerges. Identifying monomers with
nodes and chemical bonds with links shows that gelation is
equivalent to the emergence a giant componentf6–8g. A ran-
dom graph is also the most natural mean-field model of per-
colationf9,10g. In computer science, satisfiability, in its sim-
plest form, maps onto a random graphf11g. Additionally,
random graphs are used to model social networksf12,13g.

Random graphs have been analyzed largely using combi-
natorial and probabilistic methodsf3–5g. An alternative sta-
tistical physics methodology is kinetic theory or, equiva-
lently, the rate equation approach. The formation of
connected components from disconnected nodes can be
treated as a dynamic aggregation processf14–17g. This ki-
netic approach was used to derive primarily the size distri-
bution of componentsf18–20g.

Recently, we have shown that structural characteristics of
random graphs can be analyzed using the rate equation ap-
proachf21g. In this study, we present a comprehensive treat-
ment of paths and cycles in evolving random graphs. The
rate equation approach is formulated by treating linking as a
dynamic aggregation process. This approach allows an ana-
lytic calculation of the path length distribution. Since a cycle
is formed when two connected nodes are linked, the path
length distribution yields the cycle length distribution. More
subtle statistical properties of cycles in random graphs can be
calculated as well. In particular, the probability that the sys-
tem contains no cycles and the size distribution of the first,
second, etc., cycles are obtained analytically.

We focus on the behavior near and at the phase transition
point—namely, when the gel forms. We show that the path

and cycle length distribution approach self-similar distribu-
tions near the gelation transition. At the gelation point, these
distributions develop algebraic tails.

The exact results obtained for an infinite system allow us
to deduce scaling laws for finite systems. Using heuristic and
extreme statistics arguments, the size of the giant component
at the gelation point is obtained. This size scale characterizes
the size distribution of components, and it leads to a number
of scaling laws for the typical path size and cycle size. Ex-
tensive numerical simulations validate these scaling laws for
finite systems.

The rest of the paper is organized as follows. First, the
evolving random graph process is introducedsSec. IId, and
then the size distribution of all components is analyzed in
Sec. III. Statistical properties of paths are derived in Sec. IV
and then used to obtain statistical properties of all cycles
sSec. Vd and of the first cyclesSec. VId. We conclude in Sec.
VII. Finally, in an Appendix, some details of contour inte-
gration used in the body of the paper are presented.

II. EVOLVING RANDOM GRAPHS

A graph is a collection of nodes joined by links. In a
random graph, links are placed randomly. Random graphs
may be realized in a number of ways. The links may be
generated instantaneouslysstatic graphd or sequentially
sevolving graphd; additionally, a given pair of nodes may be
connected by at most a single linkssimple graphd or by mul-
tiple links smultigraphd.

We consider the following version of the random graph
model. Initially, there areN disconnected nodes. Then, a pair
of nodes is selected at random and a link is placed between
them sFig. 1d. This linking process continuesad infinitum,
and it creates an evolving random graph. The process is re-
alized dynamically. Links are generated with a constant rate
in time, set equal tos2Nd−1 without loss of generality. There
are no restrictions associated with the identity of the two
nodes. A pair of nodes may be selected multiple times; i.e., a
multigraph is created. Additionally, the two nodes need not
be different, so self-connections are allowed.

At time t, the total number of links is on averageNt/2, the
average number of links per nodesthe degreed is t, and the
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average number of self-connections per node isN−1t /2.
Therefore, whether or not self-connections are allowed is a
secondary issue. Since the linking process is completely ran-
dom, the degree distribution is Poissonian with a mean equal
to t.

III. COMPONENTS

The evolving random graph model has several virtues that
simplify the analysis. First, the linking process is completely
random as there is no memory of previous links. Second,
having at hand a continuous variablestimed allows us to use
continuum methods, particularly the rate equation approach.
This is best demonstrated by determination of the size distri-
bution of connected components.

As linking proceeds, connected components form. When a
link is placed between two distinct components, the two
components join. For example, the latest link in Fig. 1 joins
two components of sizei =2 and j =4 into a component of
sizek= i + j =6. Generally, there arei 3 j ways to join discon-
nected components. Hence, components undergo the follow-
ing aggregation process

si, jd →
i j /2N

i + j . s1d

Two components aggregate with a rate proportional to the
product of their sizes.

A. Infinite random graph

Let ckstd be the density of components containingk nodes
at time t. In terms ofNkstd, the total number of components
with k nodes, then,ckstd=Nkstd /N. For finite random graphs,
both Nkstd andckstd are random variables, but in theN→`
limit the densityckstd becomes a deterministic quantity. It
evolves according to thenonlinearrate equationsthe explicit
time dependence is dropped for simplicityd

dck

dt
= 1

2 o
i+j=k

sicids jcjd − kck. s2d

The initial condition iscks0d=dk,1. The gain term accounts
for components generated by joining two smaller compo-

nents whose sizes sum up tok. The second term on the
right-hand side of Eq.s2d represents the loss due to the link-
ing of components of sizek to other components. The corre-
sponding gain and loss rates follow from the aggregation rule
s1d.

The rate equations can be solved using a number of tech-
niques. Throughout this investigation, we use a convenient
method in which the time dependence is eliminated first.
Solving the rate equations recursively yieldsc1=e−t, c2

= 1
2te−2t, c3= 1

2t2e−3t, etc. These explicit results suggest that
ckstd=Ckt

k−1e−kt. Substituting this form into Eq.s2d, we find
that the coefficientsCk satisfy the recursion relation

sk − 1dCk = 1
2 o

i+j=k

siCids jCjd s3d

subject toC1=1. This recursion is solved using the generat-
ing function approach. The form of the right-hand side of Eq.
s3d suggests to utilize the generating function of the sequence
kCk rather thanCk—i.e.,Gszd=okkCke

kz. Multiplying Eq. s3d
by kekz and summing over allk, we find that the generating
function satisfies the nonlinear ordinary differential equation

s1 − Gd
dG

dz
= G. s4d

Integrating this equation,z=ln G−G+A, and using the as-
ymptoticsG→ez asz→−` fixes the constantA=0. Thus, we
arrive at an implicit solution for the generating function:

Ge−G = ez. s5d

The coefficientsCk can be extracted from Eq.s5d via the
Lagrange inversion formula or using contour integration as
detailed in the Appendix. Substitutingr =1 in Eq.sA1d yields
Ck=kk−2/k!, reproducing the well-known result for the size
distribution f18,19g:

ckstd =
kk−2

k!
tk−1e−kt. s6d

In the following, we shall often use the generating function
for the size distributioncsz,td=okkckstdekz. This generating
function is readily expressed via the auxiliary generating
function Gszd=okkCke

kz:

csz,td = t−1Gsz+ ln t − td. s7d

Let us consider the fraction of nodes in finite components,
M1=okkckstd. This quantity is merely the first moment of the
size distributionshence the notationd. EquivalentlyM1=csz
=0,td. From Eq.s7d we find M1=t / t with t=Gsln t− td. Us-
ing Eq. s5d, we expresst throught:

te−t = te−t. s8d

For t,1, there is a single roott= t, and all nodes reside in
finite components,M1=1. Fort.1 the physical root satisfies
t, t and only a fraction of the nodes resides in finite com-
ponents,M1,1. Thus, at timet=1, the system undergoes a
gelation transition with a finite fraction of the nodes con-
tained in infinite components. We term this time the gelation
time, tg=1. In the late stages of the evolutiont@1, one has
t. te−t and M1.c1=e−t, so the system consists of a single

FIG. 1. An evolving random graph. Links are indicated by solid
lines and the newly added link by a dashed line.
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giant component and a small number of isolated nodes.
The behavior at and near the transition point is of special

interest. The critical behavior of the component size distri-
bution is echoed by other quantities as will be shown below.
Size distributions become algebraic near the critical point.
Moreover, there is a self-similar behavior as a function of
time sdynamical scalingd and as a function of the system size
sfinite-size scalingd.

At the gelation point, the component size distribution has
an algebraic large-size tail, obtained using the Stirling for-
mula

ck . Ck−5/2, s9d

with C=s2pd−1/2. fThroughout this paper, bold letters are
used for critical distributions, sock;ckst=1d.g In the vicinity
of the gelation time, the size distribution is self-similar,
ckstd→ s1−td5Fc(ks1−td2) with the scaling function

Fcsjd = s2pd−1/2j−5/2 exps− j/2d. s10d

Thus, the characteristic component size diverges near the
gelation point,k,s1−td−2.

B. Finite random graphs

In the previous subsection, we applied kinetic theory to an
infinite system. This approach can be extended to finite sys-
tems. Unfortunately, such treatments are very cumbersome
f22,23g. Since the number of components is finite, the fluc-
tuations are no longer negligible, and instead of a determin-
istic rate equation approach, a stochastic approach is needed.
Here we follow an alternative path, employing the exact in-
finite system results in conjunction with scaling and extreme
statistics arguments.

The characteristic size of components at the gelation point
exhibits a nontrivial dependence on the system size. This is
conveniently seen via the cumulative size distribution. The
size of the largest component in the system,kg, is estimated
from the extreme statistics criterionNokùkg

ck,1 to be

kg , N2/3. s11d

The largest component in the system grows sublinearly with
the system sizef3g. The time by which this component
emerges approaches unity for large enough systems as fol-
lows from the diverging characteristic size scalekg,s1
− tgd−2:

1 − tg , N−1/3. s12d

The maximal component sizes11d underlies the entire size
distribution. LetcksN,td be the size distribution in a system
of sizeN at timet. At the gelation point, the size distribution
cksNd;cksN,t=1d obeys the finite-size scaling formsFigs. 2
and 3d

cksNd , N−5/3CcskN−2/3d. s13d

The scaling function has the extremal behaviors

Ccsjd . Hs2pd−1/2j−5/2, j ! 1,

exps− jgd, j @ 1.
J s14d

The small-j behavior corresponds to sizes well below the
characteristic size and thus reflects the infinite system behav-
ior s9d. The large-j behavior was obtained numerically with
g>3. To appreciate the large-j asymptotic, let us estimate
the probability that the system managed to generate the larg-
est possible component of sizeN/2 at timet=1. The lower
bound for this probability can be established via a “greedy”
evolution which assumes that afterk linking events the graph
is composed of a tree of sizek+1 andN−k−1 disconnected
nodes. Such evolution occurs with probability

2

N

N − 2

N

3

N

N − 3

N
¯

N − N/2

N

N/2

N
,

N!

NN ,

which scales ase−N. While this lower bound is not necessar-
ily optimal, it suggests that the actual probability is exponen-

FIG. 2. sColor onlined The size distribution for a finite system at
the gelation point. Shown iscksNd versusk for various N. The
infinite system behavior is shown for reference. The data represent
an average over 106 independent realizations.

FIG. 3. sColor onlined Finite-size scaling of the size distribution.
Shown iss2pj5d1/2Ccsjd versusj, obtained from simulations with
variousN.
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tially small. The scaling variablej=kN−2/3 becomes j
,N1/3 for k=N/2, so exps−Ng/3d matches the probability
exps−Nd wheng=3.

To check the critical behavior in finite systems, we per-
formed numerical simulations. In the simulations,N/2 links
are placed randomly and sequentially among theN nodes as
follows. A node is drawn randomly, and then another node is
drawn randomly. Last, these two nodes are linked. Self-
connections are therefore allowed. The simulations differ
slightly from the above random graph model in that the num-
ber of links is not a stochastic variable. For largeN, this
simulation is faithful to the evolving random graph model
because the number of links is self-averaging.

The simulation results are consistent with the postulated
finite-size scaling forms13d. We note that the scaling func-
tion Ccsjd converges slowly as a function ofN. The simula-
tions reveal an interesting behavior of the finite-size scaling
function. The functioncksNd has a “shoulder”—a nonmono-
tonic behavior compared with the pure algebraic behaviors9d
characterizing infinite systemssFig. 2d. The properly normal-
ized scaling functions2pj5d1/2Ccsjd is a nonmonotonic
function of j sFig. 3d. Obtaining the full functional form of
the scaling functionCcsjd remains a challenge. A very simi-
lar shoulder has been observed for the degree distribution of
finite random networks generated by preferential attachment
f24–27g.

IV. PATHS

The structural characteristics of components can be inves-
tigated in a similar fashion. By definition, every two nodes in
a component are connected. In other words, there is apath
consisting of adjacent links between two such nodes. We
investigate statistical properties of paths in components.
Characterization of paths yields useful information regarding
the connectivity of components as well as internal structures
such as cycles.

For every node in the graph, there aresgenerallyd multiple
paths that connect it with all other nodes in the respective
component. With new links, new paths are formed. For every
pair of paths of lengthsn andm originating at two separate
nodes, a new path is formed as follows:

n,m→ n + m+ 1. s15d

In Fig. 1, the linking of two paths of respective lengthsn
=1 andm=2 generates a path of lengthn+m+1=4. Thus,
paths also undergo an aggregation process. However, this
aggregation process is simpler than Eq.s1d because the ag-
gregation rate is independent of the path length.

Let qlstd be the density ofdistinctpaths containingl links
at time t. By distinct we mean that the two paths connecting
two nodes are counted separately. By definition,q0std=1.
The rest of the densities grow according to the rate equation

dql

dt
= o

n+m=l−1
qnqm s16d

for l .0. The initial condition isqls0d=dl,0. This rate equa-
tion reflects the uniform aggregation rate. Another notable

feature is the lack of a loss term—once a path is created, it
remains forever. Solving recursively givesq1= t, q2= t2, etc.
By induction, the path length density is

qlstd = tl . s17d

Indeed, this expression satisfies both the rate equation and
the initial condition. The first quantityq1= t is consistent with
the fact that the link density is equal tot /2 and that every
link corresponds to two distinct paths of length 1.

The above path density represents an aggregate over all
nodes and all components. Characterization of path statistics
in a component of a given size is achieved viapl,k, the den-
sity of paths of lengthl in components of sizek. Note the
obvious length bounds 0ø l øk−1 and the sum ruleolpl,k
=k2ck, reflecting the fact that there arek2 distinct paths in a
component of sizek severy pair of nodes is connectedd. The
density of the linkless paths isp0,k=kck, becausekck is the
probability that a node belongs to a component of sizek.

We have seen that components and paths form via the
aggregation processess1d and s15d, respectively. The joint
distribution pl,k therefore undergoes a biaggregation process
f28g. In the present case,

sn,id + sm, jd → sn + m+ 1,i + jd, s18d

where the first index corresponds to the path length and the
second to the component size. The joint distribution evolves
according to the rate equation

dpl,k

dt
= o

i+j=k

n+m=l−1

pn,ipm,j + o
i+j=k

sipl,ids jcjd − kpl,k. s19d

The initial conditions arepl,ks0d=dk,1dl,0. The first term on
the right-hand side of Eq.s19d describes newly formed paths
due to linking. The last two terms correspond to paths that do
not contain the newly placed link.

We now repeat the steps used to determine the size distri-
bution. The time dependence is eliminated using the ansatz
pl,k=Pl,kt

k−1e−kt. The corresponding coefficientsPl,k satisfy
the recursion

sk − 1dPl,k = o
i+j=k

n+m=l−1

Pn,iPm,j + o
i+j=k

siPl,ids jCjd. s20d

The generating functionPlszd=okPl,ke
kz satisfies the recur-

sion relations1−GddPl /dz=on+m=l−1PnPm+Pl for l .0. Di-
viding this equation by Eq.s4d yields

G
dPl

dG
= o

n+m=l−1
PnPm + Pl s21d

for l .0. As noted aboveP0,k=kCk, so P0szd=Gszd. Solving
Eq. s21d recursively givesP1=G2, P2=G3, etc. In general,

Plszd = Gl+1szd. s22d

This solution can be validated directly. The time-dependent
generating function plszd=okpl,ke

kz is therefore plszd
= t−1Gl+1sz+ln t− td. The total density of paths of lengthl,
plsz=0d= tl, coincides with Eq.s17d prior to the gelation tran-
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sition st,1d because all components are finite. However, the
total number of paths is reduced,plsz=0d= t−1tl+1, past the
gelation timest.1d.

One may also obtain the bivariate generating function
psz,wd=ol,kpl,kw

lekz. Using Eq.s22d one gets

psz,wd = t−1 Gsz+ ln t − td
1 − wGsz+ ln t − td

. s23d

The total density of paths in finite components is of course
g=ol,kpl,k, so g;psz=0,w=1d. Generally,g=t / ts1−td; for
t,1, the total density of paths isgstd=s1−td−1.

The coefficients are found via the contour integration
Pl,k=s2pid−1rdyPly

−k−1 ssee the Appendixd. Substitutingr
= l +1 in Eq. sA1d yields Pl,k=sl +1dkk−l−2/ sk− l −1d!. As a
result, the density of paths of lengthl in components of size
k is

pl,k = sl + 1d
kk−l−2

sk − l − 1d!
tk−1e−kt. s24d

Comparing Eqs.s24d and s6d we notice that the densities of
the two shortest paths satisfyp0,k=kck and p1,k=2sk−1dck.
The latter reflects that there arek−1 links in a tree of sizek
and that with unit probability all components are treessas
discussed in the next sectiond.

Note also that the longest possible pathl =k−1 corre-
sponds to linearschainliked components. According to Eq.
s24d, the density of such paths ispk−1,k= tk−1e−kt. This density
decays exponentially with length, so these components are
typically small, their length being of order 1.

The path length density can be simplified in the large
k-limit by considering the properly normalized ratio of fac-
torials

k!

klsk − ld!
= p

j=1

l−1 S1 −
j

k
D = expS− o

j=1

l
j

k
+

1

2o
j=1

l
j2

k2 − ¯ D
. exps− l2/2kd.

Using the Stirling formula, in the limitsk@1 and l @1, the
path density becomes

pl,k . ls2pk3d−1/2tk−1eks1−tde−l2/2k. s25d

As was the case for the component size distribution, the path
length density is self-similar in the vicinity of the gelation
point, pl,k→ s1−td2Fp(ks1−td2, ls1−td), with the scaling
function

Fpsj,hd = hs2pj3d−1/2 exps− h2/2jd. s26d

Thus, the characteristic path length diverges near the gelation
point, l ,s1−td−1.

At the critical point, the path length density becomes

pl,k . ls2pk3d−1/2 exps− l2/2kd. s27d

It is evident that the typical path length scales as square root
of the component size

l , k1/2. s28d

For finite systems, the scaling law for the typical path
lengths28d combined with the characteristic component size
s11d leads to the following characteristic path length:

l , N1/3. s29d

One can deduce several other scaling laws and finite-size
scaling functions underlying the path density. For example,
substituting the gelation time 1−tg,N−1/3 into the total num-
ber of pathsg=s1−td−1 yields g,N1/3.

V. CYCLES

Each component has a certain number of nodes and links.
The complexity of a component is defined as the number of
links minus the number of nodes. Components with com-
plexity −1 are trees; components with complexity 0 and 1 are
termed unicyclic and bicyclic correspondingly. Finite com-
ponents are predominantly trees. We have seen that the over-
all number of links is proportional toN and that the overall
the number of self-links is of the order unity. The overall
numbers of trees and of unicyclic components mirror this
behavior. Generally, the number of components of complex-
ity R is proportional toN−R sthis result is well known; see,
e.g., f5,21g and especiallyf29gd. Therefore, it suffices to
characterize trees and unicyclic components only.

Each unicyclic component contains a single cycle. Cycles
are an important characteristic of a graphf30,31g. In this
section, we analyze cycles and unicyclic components using
the rate equation approach. We first note that cycles in ran-
dom graphs were also studied using various other ap-
proaches: Jansonf32,33g employs probabilistic and combi-
natorial techniques, Marinari and Monassonf31g assign an
Ising spin to each node and deduce certain properties of
loops from the partition function of the Ising model, and
Burdaet al. f34g modify a random graph model to favor the
creation of short cycles and examine the model using a dia-
grammatic technique. A number of authors also studied
cycles on information networks like the Internetssee f35g
and references thereind.

A. Infinite system

There is a significant difference between the distribution
of trees and unicyclic components. In the thermodynamic
limit, the number of trees is extensive and as a result, it is a
deterministic or self-averaging quantity. The number of uni-
cyclic components is not extensive, but rather of the order
unity; as a result, it is a random quantity with a nontrivial
distribution even for infinite random graphs. In what follows,
we study theaveragenumber of unicyclic components of a
given size or cycle length.

The average number of cycles follows directly from the
path length density. Quite simply, when the two extremal
nodes in a path are linked, a cycle is born. Let the number of
cycles of sizel at time t be wlstd. It grows according to the
rate equation
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dwl

dt
=

1

2
ql−1. s30d

The right-hand side equals the link creation rate 1/s2Nd
times the total number of pathsNql−1; indeed, the total num-
ber of cycles of a given length is of order 1. The cycle length
distribution is

wl =
tl

2l
. s31d

In particular, at the gelation point, the cycle length distribu-
tion is inversely proportional to the cycle lengthf5g

wl = s2ld−1. s32d

This result can alternatively be obtained using combinator-
ics.

To characterize cycles in a given component size, we con-
sider the joint distributionul,k, the average number of unicy-
clic components of sizek containing a cycle of lengthl with
1ø l øk. This joint distribution evolves according to thelin-
ear rate equation

dul,k

dt
= 1

2pl−1,k + o
i+j=k

siul,ids jcjd − kul,k s33d

for l ù1. Initially there are no cycles, and thereforeul,ks0d
=0. Eliminating the time dependence via the substitution
ul,k=Ul,kt

ke−kt, the coefficients satisfy the recursion

kUl,k = 1
2Pl−1,k + o

i+j=k

siUl,ids jCjd. s34d

Using the generating functionUlszd=oke
kzUl,k this recursion

is recast into the differential equations1−GddUl /dz= 1
2Pl−1.

Dividing by Eq. s4d, we obtain

dUl

dG
= 1

2Gl−1. s35d

Integrating this equation yields the generating function

Ulszd =
1

2l
Glszd. s36d

Consequently, the cycle length distributionsin finite compo-
nents onlyd is pl =tl /2l, in agreement with Eq.s31d prior to
the gelation timest,1d.

Additionally, the joint generating function defined as
usz,wd=ol,ke

kzwlul,k is given by

usz,wd = 1
2 ln

1

1 − wGsz+ ln t − td
. s37d

As for paths, statistics of cycles are directly coupled to sta-
tistics of components via the generating functionGszd. The
total number of unicyclic components of finite-sizeh
=ol,kul,k is therefore

hstd = 1
2 ln

1

1 − t
. s38d

Below the gelation point,hstd= 1
2 lnf1/s1−tdg, for t,1. The

total number of unicyclic components can alternatively be
obtained by noting thatsid it satisfies the rate equation
dh/dt= 1

2okk
2ck= 1

2M2 andsii d the second moment of the size
distribution isM2=s1−td−1 for t,1 as follows from Eq.s7d.

The coefficients underlying the cycle distribution are
found using contour integration. Indeed, writingUl,k
=s2pid−1rUly

−k−1dy and substitutingr = l in Eq. sA1d gives
Ul,k= 1

2fkk−l−1/ sk− ld!g f4g. The cycle length-size distribution
is therefore

ul,kstd =
1

2

kk−l−1

sk − ld!
tke−kt. s39d

The smallest cyclel =1 is a self-connection, and the average
number of such cycles isu1,k=st /2dkck. The largest cycles
are rings, l =k, and their total number is on averageuk,k
=s1/2kdtke−kt.

The large-k behavior of the cycle length distribution is
found following the same steps leading to Eq.s25d:

ul,kstd . s8pk3d−1/2tkeks1−tde−l2/2k. s40d

This distribution is self-similar in the vicinity of the gelation
transition,ul,kstd→ s1−td3Fu(ks1−td2, ls1−td), with the scal-
ing function

Fusj,hd = s8pj3d−1/2 exps− h2/2jd. s41d

We see that the cycle length is characterized by the same
scale as the path length,l ,s1−td−1. At the gelation point, the
distribution is

ul,k . s8pk3d−1/2 exps− l2/2kd. s42d

Fixing the component size, the typical cycle length behaves
as the typical path length,l ,k1/2.

The size distribution of unicyclic components is found
from the joint distributionvk=olul,k. Using Eq.s39d we get
f21g

vkstd =
1

2
So

n=0

k−1
kn−1

n!
Dtke−kt. s43d

This distribution can alternatively be derived from thelinear
rate equation

dvk

dt
= 1

2k2ck + o
i+j=k

sivids jcjd − kvk. s44d

This equation is obtained from Eq.s33d using the equality
k2ck=olpl,k. It reflects that the linking a pair of nodes in a
component generates a unicyclic component. Integrating Eq.
s42d over the cycle length, the critical size distribution of
unicyclic components has an algebraic tail

vk . s4kd−1. s45d
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B. Finite systems

We turn now to finite systems, restricting our attention to
the gelation point. The total number of unicyclic components
is obtained by estimatinghsN,tgd. Substituting Eq.s12d into
Eq. s38d shows that the average number of unicyclic compo-
nents sand, hence, cyclesd grows logarithmically with the
system sizesFig. 4d:

hsNd . 1
6 ln N. s46d

Comparing the path length distributions27d and the cycle
length distributions42d, we conclude that the characteristic
cycle length and the characteristic path length obey the same
scaling lawl ,N1/3. This implies that the cycle length distri-
bution in a finite system of sizeN, wlsNd, obeys the finite-
size scaling law

wlsNd , N−1/3CwslN−1/3d. s47d

Numerical simulations confirm this behaviorsFig. 5d.
In the simulations, analysis of cycle statistics requires us

to keep track of all links. Cycles are conveniently identified
using the standard “shaving” algorithm. Dangling links—i.e.,
links involving a single-link node—are removed from the
system sequentially. The link removal procedure is carried
until no dangling links remain. At this stage, the system con-
tains no trees. Simple cycles are those components with an
equal number of links and nodes.

The extremal behaviors of the finite-size scaling function
are as follows:

Cwshd . Hs2hd−1, h → 0,

exps− Ch3/2d, h → `.
J s48d

The small-h behavior follows from Eq.s32d. Statistics of
extremely large cycles can be understood by considering the
largest possible cycles. When there aren=N/2 links, the
largest possible cycle has lengthl =N/2. Its likelihood
wsn,2nd is obtained using combinatorics:

wsn,2nd = S2n

n
D n!

2n
s2nd−n. s49d

There ares 2n
n

d ways to choose the nodes participating in the
cycle and the next term is the number of ways to arrange
them in a cycle. The corrective factor 2n accounts for rota-
tion and reflection symmetries. The last term is the probabil-
ity that each pair of consecutive nodes are linked. The large-
n asymptotic behavior is

wsn,2nd .
1

Î2n
S2

e
Dn

. s50d

Therefore,wsn,2nd,exps−CNd. Substitutingl ,N into the
scaling form s47d leads to the superexponential behavior
Cwshd,exps−Ch3/2d; see Fig. 6.

FIG. 4. The total number of unicyclic components versus the
system size at the gelation point. Shown ish versusN. Each data
point represents an average over 106 independent realizations.

FIG. 5. sColor onlined Finite-size scaling of the cycle length
distribution. Shown is 2hCwshd versush obtained using systems
with sizeN=104, 105, and 106. The data represent an average over
106 independent realizations.

FIG. 6. sColor onlined The tail of the scaling function. Shown is
2hCwshd versush3/2.
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Typically, cycles are of sizeN1/3. The average moments
klsNdl=ollwlsNd /olwlsNd reflect this law. However, the alge-
braic divergencewl , l−1 leads to a logarithmic correction as
follows from Eqs.s46d–s48d:

klnsNdl , Nn/3fln Ng−1. s51d

The behavior of the average cycle length is verified numeri-
cally sFig. 7d.

Finite-size scaling of other cycle statistics such as the
joint distribution can be constructed following the same pro-
cedure. For example, the size distribution of unicyclic com-
ponents should follow the scaling form

vksNd , N−2/3CvskN−2/3d. s52d

The scaling function divergesCvsjd.s4jd−1 for j→0.

VI. FIRST CYCLE

The above statistical analysis of cycles characterizes the
average behavior but not necessarily the typical one because
the number of cycles is a fluctuating quantity. There are nu-
merous interesting features concerning cycles that are not
captured by the average number of cycles. For instance, what
is the probability that the system does not contain a cycle up
to time t? It suffices to answer this question in the pre-gel
regime as the giant component certainly contains cycles.

Let s0std be thessurvivald probability that the system does
not contain a cycle at timet. The cycle production rate isJ
=dh/dt=1/2s1−td. The number of cycles is finite in the pre-
gel regime, since cycles are independent of each other in the
N→` limit. This assertionssupported by numerical simula-
tions; see Fig. 8d implies that the cycle production process is
completely random. The cycle production rate characterizes
the survival probabilitys0 as follows:

ds0

dt
= − Js0. s53d

The initial condition iss0s0d=1. As a result, the survival
probability is

s0std = s1 − td1/2 s54d

for tø1. The survival probability vanishes beyond the gela-
tion point, s0std=0 for t.1. This reiterates that in the ther-
modynamic limit, a cycle is certain to form prior to the ge-
lation transitionf5g.

Since the number of cycles produced is of order 1 in the
pre-gel regime, one may expect that the statistical properties
of cycles strongly depend on their generation number or al-
ternatively on their creation time. This is manifested by the
first cycle. The quantitydts0 dwl /dt is the probability thatsid
the system contains no cycles at timet, sii d a cycle is pro-
duced during the time intervalst ,t+dtd, andsiii d its length is
l. Summing these probabilities gives the probability that the
first cycle produced sometimes during the pre-gel regime has
length l:

f l =E
0

1

dts0
dwl

dt
=

1

2
E

0

1

dts1 − td1/2tl−1. s55d

Summing these quantities, we verify the normalization

o
lù1

f l =
1

2
E

0

1

dts1 − td−1/2 = 1.

The length distribution of the first cycle can be expressed in
terms of theb function f l =

1
2Bs3/2,ld or, alternatively,

f l =
Îp

4

Gsld
Gsl + 3/2d

. s56d

The probability distributionf l has an algebraic tail,

FIG. 7. The average cycle size at the gelation point. Shown is
klsNdlhsNd versusN. Each data point represents an average over 106

independent realizations.

FIG. 8. sColor onlined The distribution of the number of cycles.
Shown issn versusn at the gelation point. The system size isN
=105 and an average over 105 realizations has been performed. A
Poissonian distribution with an identical average is also shown for
reference.
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f l . Cl−3/2, s57d

with C=Îp /4 for l @1. The tail exponent characterizing the
distribution of the first cycle is larger compared with the
exponent characterizing all cycles, reflecting the fact that the
first cycle is created earlier.

Similarly, one can obtain additional properties of the first
cycle. We mention the probabilityFk that the first unicyclic
component has sizek,

Fk =E
0

1

dts0
1
2k2ck =

1

2

kk

k!
Ik, s58d

with the integralIk=e0
1dts1−td1/2tk−1e−kt. This integral can be

expressed in terms of the confluent hypergeometric function.
Its asymptotic behavior can be readily found by noting that
the integrand has a sharp maximum in the region 1−t
,k−1/2, leading toIk.2−1/4Gs3/4dk−3/4e−k. Using this in con-
junction with the Stirling’s formula, the size distribution has
the algebraic tail

Fk . Ck−5/4, s59d

with C=2−7/4p−1/2Gs3/4d for k@1.
Under the assumption that cycle production is completely

random, the number of cycles obeys Poisson statistics. The
probability that there aren cycles, sn, then satisfies the
straightforward generalization of Eq.s53d—viz., dsn/dt
=Jfsn−1−sng with the initial conditionsns0d=dn,0. The solu-
tion is the Poisson distributionsn=shn/n!de−h; see Fig. 8.
Explicitly, the distribution reads

sn =
s1 − td1/2

n!
F1

2
ln

1

1 − t
Gn

. s60d

The cumulative distributionSnstd=s0std+¯ +snstd is plotted
in Fig. 9.

The Poisson distributions60d can also be used to calculate
fn,l the size distribution of thenth cycle. We merely quote the
large-l tail behavior

fn,l ,
1

sn − 1d!
l−3/2F1

2
ln lGn−1

. s61d

Indeed, summation over the cycle generation reproduces the
overall cycle distributions32d.

In finite systems, it is possible that no cycles are created at
the gelation time. This probability decreases algebraically
with the system size, as seen by substituting Eq.s12d into Eq.
s54d:

s0 , N−1−6. s62d

This prediction agrees with simulations; see Fig. 10. In prac-
tice, this slow decay indicates that a relatively large system
may contain no cycles afterN/2 links are placed. Generally,
the probability that there is a finite number of cycles in-
creases with the number of cycles:

sn ,
1

n!
N−1/6F1

6
ln NGn

. s63d

The length distribution of the first cycle is characterized
by the samel ,N1/3 size scale as does the overall cycle dis-
tribution. We focus on the behavior of the moments:

klnl , Nn/3−1/6. s64d

This behavior is obtained from the distributions57d that
should be integrated up to the appropriate cutoff—i.e.,klnl
,e1

N1/3
dllnl−3/2. As a result, the average size of the first cycle

is much smaller than the characteristic cycle sizekll,N1/6.
Moments corresponding to the size of the first unicyclic
component grow as follows:

kknl , N2n/3−1/6, s65d

as obtained from Eq.s59d. Consequently, the average size of
the first unicyclic component is smaller than the characteris-
tic component size,kkl,N1/2.

FIG. 9. sColor onlined The cumulative distributionSnstd
=o0ø jønsjstd versust for n=0,1,2,3.

FIG. 10. The survival probability versus the system size. Shown
is s0sNd versusN at the gelation point—i.e., whenN/2 links are
placed. Each data point represents an average over 106 realizations.
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VII. CONCLUSIONS

In summary, we have extended the kinetic theory descrip-
tion of random graphs to structures such as paths and cycles.
Modeling the linking process dynamically leads to an aggre-
gation process for both components and paths. The density of
paths in finite components is coupled to the component size
distribution via nonlinear rate equations while the average
number of cycles is coupled to the path density via linear rate
equations. Both path and cycle length distributions are
coupled to the component size distribution.

Generally, size distributions decay exponentially away
from the gelation point, but at the gelation time, algebraic
tails emerge. As the system approaches this critical point, the
size distributions follow a self-similar behavior characterized
by diverging size scales.

The kinetic theory approach is well suited for treating
infinite systems. The complementary behavior for finite sys-
tems can be obtained from heuristic scaling arguments. This
approach yields scaling laws for the typical component size,
path length, and cycle length at the gelation point. These
scaling laws can be formalized using finite-size scaling
forms—i.e., self-similarity as a function of the system size,
rather than time. Obtaining the exact form of these scaling
functions is a nice challenge in particular for the most fun-
damental quantity, the component size distribution that is
characterized by a nonmonotonic scaling function.

The kinetic theory approach seems artificial at first sight.
Indeed, graphs are discrete in nature and therefore combina-
torial approaches appear more natural. Yet once the rate
equations are formulated, the analysis is straightforward. Uti-
lizing the continuous time variable allows us to employ pow-
erful analysis tools. Moreover, some of the kinetic theory
results are less cumbersome compared with the combinato-
rial results.

The same methodology can be expanded to analyze other
features of random graphs. For example, correlations be-
tween the node degree and the cluster size can be analyzed
using biaggregation rate equationsf36g. It is quite possible
that structural properties in other aggregation processes—for

example, polymerization with a sum kernelf17g—and in
other variants of random graphs such as small-world net-
works f37g can be analyzed using kinetic theory.

One could try to utilize kinetic theory to probe the distri-
bution of various families of subgraphs. We have limited
ourselves to cycles since they, alongside with trees, do ap-
pear in random graphs while more interconnected families of
subgraphs are very raref29g. Yet in biological and techno-
logical networks certain interconnected families of sub-
graphs do appear. Such populated families of subgraphs, mo-
tifs, are believed to carry information processing functions
f38,39g. It will be interesting to use kinetic theory to analyze
motifs in special random graphs.
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APPENDIX: CONTOUR INTEGRATION

Let Aszd=okAke
kz be the generating function of the coef-

ficients Ak. For the family of generating functionsAszd
=Grszd with Gszd satisfyingGe−G=ez, the coefficientsAk can
be obtained via contour integration in the complexy plane
wherey=ez as follows:

Ak =
1

2pi
R dy

Gr

yk+1 =
1

2pi
R dGGr e

sk+1dG

Gk+1

dy

dG

=
1

2pi
R dGGr e

sk+rdG

Gk+1 s1 − Gde−G

=
1

2pi
R dGo

n

kn

n!
sGn+r−k − Gn+r+1−kd

= r
kk−r−1

sk − rd!
. sA1d

SinceGe−G=ez, it is convenient to perform the integration in
the complexG plane. In writing the third line, we used
dy/dG=s1−Gde−G.
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