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Kinetic theory of random graphs: From paths to cycles
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The structural properties of evolving random graphs are investigated. Treating linking as a dynamic aggre-
gation process, rate equations for the distribution of node to node distigratks and of cycles are formulated
and solved analytically. At the gelation point, the typical length of paths and cycksales with the compo-
nent sizek asl ~ k2. Dynamic and finite-size scaling laws for the behavior at and near the gelation point are
obtained. Finite-size scaling laws are verified using numerical simulations.
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I. INTRODUCTION and cycle length distribution approach self-similar distribu-

Arandom graph is a set of nodes that are randomly joinedions near the gelation transition. At the gelation point, these
by links. When there are sufficiently many links, a connectedlistributions develop algebraic tails.
component containing a finite fraction of all nodes, the so- The exact results obtained for an infinite system allow us
called giant component, emerges. Random graphs, with varjo deduce scaling laws for finite systems. Using heuristic and
ing flavors, arise naturally in statistical physics, chemicaleéxtreme statistics arguments, the size of the giant component
physics, combinatorics, probability theory, and computer sciat the gelation point is obtained. This size scale characterizes
ence[1-5]. the size distribution of components, and it leads to a number

Several physical processes and algorithmic problems aref scaling laws for the typical path size and cycle size. Ex-
essentially equivalent to random graphs. In gelation, monotensive numerical simulations validate these scaling laws for
mers form polymers via chemical bonds until a giant poly-finite systems.
mer network, a “gel,” emerges. Identifying monomers with ~ The rest of the paper is organized as follows. First, the
nodes and chemical bonds with links shows that gelation igvolving random graph process is introdud&ec. 1), and
equivalent to the emergence a giant compofiérg]. Aran-  then the size distribution of all components is analyzed in
dom graph is also the most natural mean-field model of perSec. lll. Statistical properties of paths are derived in Sec. IV
colation[9,10]. In computer science, satisfiability, in its sim- and then used to obtain statistical properties of all cycles
plest form, maps onto a random graptl]. Additionally,  (Sec. V) and of the first cycléSec. V). We conclude in Sec.
random graphs are used to model social netwpts13. VII. Finally, in an Appendix, some details of contour inte-

Random graphs have been analyzed largely using combgration used in the body of the paper are presented.
natorial and probabilistic method8-5]. An alternative sta-
tistical physics methodology is kinetic theory or, equiva-
lently, the rate equation approach. The formation of A graph is a collection of nodes joined by links. In a
connected components from disconnected nodes can Wwandom graph, links are placed randomly. Random graphs

Il. EVOLVING RANDOM GRAPHS

treated as a dynamic aggregation proddss-17. This ki- may be realized in a number of ways. The links may be
netic approach was used to derive primarily the size distrigenerated instantaneouslgstatic graph or sequentially
bution of component§18-20. (evolving graph; additionally, a given pair of nodes may be

Recently, we have shown that structural characteristics ofonnected by at most a single li&imple graphor by mul-
random graphs can be analyzed using the rate equation afple links (multigraph.
proach[21]. In this study, we present a comprehensive treat- We consider the following version of the random graph
ment of paths and cycles in evolving random graphs. Thenodel. Initially, there ar& disconnected nodes. Then, a pair
rate equation approach is formulated by treating linking as @f nodes is selected at random and a link is placed between
dynamic aggregation process. This approach allows an antghem (Fig. 1). This linking process continuesd infinitum
lytic calculation of the path length distribution. Since a cycleand it creates an evolving random graph. The process is re-
is formed when two connected nodes are linked, the pathlized dynamically. Links are generated with a constant rate
length distribution yields the cycle length distribution. More in time, set equal t¢2N)™* without loss of generality. There
subtle statistical properties of cycles in random graphs can bare no restrictions associated with the identity of the two
calculated as well. In particular, the probability that the sys-nodes. A pair of nodes may be selected multiple times; i.e., a
tem contains no cycles and the size distribution of the firstmultigraph is created. Additionally, the two nodes need not
second, etc., cycles are obtained analytically. be different, so self-connections are allowed.

We focus on the behavior near and at the phase transition At timet, the total number of links is on averafyg/2, the
point—namely, when the gel forms. We show that the pathaverage number of links per nodine degregis t, and the
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nents whose sizes sum up ko The second term on the
right-hand side of Eq(2) represents the loss due to the link-
ing of components of sizk to other components. The corre-
sponding gain and loss rates follow from the aggregation rule
(2).

\ The rate equations can be solved using a number of tech-
niques. Throughout this investigation, we use a convenient
method in which the time dependence is eliminated first.
Solving the rate equations recursively yieldg=€e™, c,
=3te'?, c;=3t% ¥, etc. These explicit results suggest that

c () =C,t“Te’¥, Substituting this form into Eq2), we find

that the coefficient€, satisfy the recursion relation

FIG. 1. An evolving random graph. Links are indicated by solid (k-1)Cy= %2 (iCH(Cy) (3
lines and the newly added link by a dashed line. i+j=k
subject toC,;=1. This recursion is solved using the generat-
average number of self-connections per nodeNidt/2.  ing function approach. The form of the right-hand side of Eq.

Therefore, whether or not self-connections are allowed is &3) suggests to utilize the generating function of the sequence
secondary issue. Since the linking process is completely rarkC, rather tharC,—i.e., G(z) ==,kC.e% Multiplying Eq. (3)
dom, the degree distribution is Poissonian with a mean equdly ke and summing over ak, we find that the generating
tot. function satisfies the nonlinear ordinary differential equation

dG _
Ill. COMPONENTS (1"6)5‘6' (4)
The evolving random graph model has several virtues thahtegrating this equatiorz=In G-G+A, and using the as-
simplify the analysis. First, the linking process is completelyymptoticsG — e? asz— — fixes the constard=0. Thus, we
random as there is no memory of previous links. Secondarrive at an implicit solution for the generating function:
having at hand a continuous varialftene) allows us to use o
continuum methods, particularly the rate equation approach. Ge™~=¢. (5
This is best demonstrated by determination of the size distriThe coefficientsC, can be extracted from Ed5) via the
bution of connected components. Lagrange inversion formula or using contour integration as
As linking proceeds, connected components form. When @etailed in the Appendix. Substituting 1 in Eq.(A1) yields

link is placed between two distinct components, the twoc,=kk-2/ki, reproducing the well-known result for the size
components join. For example, the latest link in Fig. 1 joinsdjstribution[18,19:

two components of size=2 andj=4 into a component of 2
sizek=i+j=6. Generally, there ariex ] ways to join discon- ot = k_tk—le—kt. (6)
nected components. Hence, components undergo the follow- k!

Ing aggregation process In the following, we shall often use the generating function

N for the size distributiorc(z,t)==,kc(t)e"% This generating
(i) —i+]j. (D) function is readily expressed via the auxiliary generating
Two components aggregate with a rate proportional to théunction G(2) =2k
product of their sizes. c(zt) =t 1G(z+ Int-1). (7)

o Let us consider the fraction of nodes in finite components,
A. Infinite random graph M;=3kc(t). This quantity is merely the first moment of the

Let ¢,(t) be the density of components containkigodes ~ size distribution(hence the notation EquivalentlyM,=c(z
at timet. In terms ofNy(t), the total number of components =0,t). From Eq.(7) we find M, =/t with 7=G(Int-t). Us-
with k nodes, theng,(t)=N,(t)/N. For finite random graphs, ing Eq.(5), we express- throught:
both N(t) and_ck(t) are random variables, but in tié— o =t (8)
limit the densityc,(t) becomes a deterministic quantity. It

evolves according to theonlinearrate equatiorithe explicit ~ FOr t<1, there is a single root=t, and all nodes reside in
time dependence is dropped for simpligity finite componentdV; =1. Fort>1 the physical root satisfies
7<t and only a fraction of the nodes resides in finite com-

do, 4 N ponentsM; < 1. Thus, at timg=1, the system undergoes a
dt Eizk('cimci) ~KG. 2) gelation transition with a finite fraction of the nodes con-
tained in infinite components. We term this time the gelation
The initial condition isc,(0)=8 1. The gain term accounts time, t,=1. In the late stages of the evolutio® 1, one has
for components generated by joining two smaller compo-r=te™ and M;=c,=¢€, so the system consists of a single
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giant component and a small number of isolated nodes.

The behavior at and near the transition point is of special
interest. The critical behavior of the component size distri-
bution is echoed by other quantities as will be shown below.
Size distributions become algebraic near the critical point.
Moreover, there is a self-similar behavior as a function of
time (dynamical scalingand as a function of the system size
(finite-size scaling

At the gelation point, the component size distribution has
an algebraic large-size tail, obtained using the Stirling for-
mula

C(N)

¢ = Ck>?2, 9
-15

with C=(27)"Y2. [Throughout this paper, bold letters are 10 . : . :
used for critical distributions, sq.= ¢, (t=1).] In the vicinity 10
of the gelation time, the size distribution is self-similar, k

5 on ; .
C(t) — (1-°@o(k(1-1)) with the scaling function FIG. 2. (Color online The size distribution for a finite system at
D (&) = (2m) Y2 exp(- €2). (10) the gelation point. Shown ig(N) versusk for various N. The
infinite system behavior is shown for reference. The data represent
Thus, the characteristic component size diverges near thgé average over fandependent realizations.
gelation pointk~ (1-t)™2

The small¢ behavior corresponds to sizes well below the
B. Finite random graphs characteristic size and thus reflects the infinite system behav-

In the previous subsection, we applied kinetic theory to an®’ (9). The large¢ behavior was obtained numerically with

infinite system. This approach can be extended to finite sy y=3. To appreciate the large-asymptotic, let us estimate
tems. Unfortunately, such treatments are very cumbersomge probability that the system managed to generate the larg-

[22,23. Since the number of components is finite, the quc-est possible component of siNg/2 at timet=1. The lower

tuations are no longer negligible, and instead of a determinl?ound for this probability can be established via a "greedy”

istic rate equation approach, a stochastic approach is needed. olution which assumes that aftefinking events the graph

Here we follow an alternative path, employing the exact in-> composed of a tree of size1 andN—k-1 disconnected

finite system results in conjunction with scaling and extremenOdeS' Such evolution occurs with probability

statistics arguments. o 2N-23N-3 N-N2N2 N
The characteristic size of components at the gelation point — — —
exhibits a nontrivial dependence on the system size. This is N N N N N N N

conveniently seen via the cumulative size distribution. Th%vhich scales as
size of the largest component in the systégq,is estimated
from the extreme statistics critericNEkzkgck~ 1 to be

kg ~ N?3. (11) 2

The largest component in the system grows sublinearly with
the system sizg3]. The time by which this component
emerges approaches unity for large enough systems as fol- 1.5}
lows from the diverging characteristic size scag~ (1
~ty) 72

N, While this lower bound is not necessar-
ily optimal, it suggests that the actual probability is exponen-

1-tg~N73, (12)

The maximal component siZz&1) underlies the entire size
distribution. Letc,(N,t) be the size distribution in a system 05}
of sizeN at timet. At the gelation point, the size distribution
c(N)=c,(N,t=1) obeys the finite-size scaling forffrigs. 2
and 3 0

c(N) ~ N3 (kN23), (13

The scaling function has the extremal behaviors

0.m)-1/2¢512 <1 FIG. 3. (Color onling Finite-size scaling of the size distribution.
V(8 = (2m) ™" & ' (14) Shown is(27&2)Y2¥ (¢) versusé, obtained from simulations with
¢ exp(— &), E>1. variousN.
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tially small. The scaling variableé=kN2/® becomes¢  feature is the lack of a loss term—once a path is created, it
~NY3 for k=N/2, so exp—N”3) matches the probability remains forever. Solving recursively gives=t, q,=t?, etc.
exp(-N) when y=3. By induction, the path length density is

To check the critical behavior in finite systems, we per- o
formed numerical simulations. In the simulatiohd,2 links a® =t. 17
are placed randomly and sequentially amongNheodes as  Indeed, this expression satisfies both the rate equation and
follows. A node is drawn randomly, and then another node ishe initial condition. The first quantitgy;, =t is consistent with
drawn randomly. Last, these two nodes are linked. Selfthe fact that the link density is equal t62 and that every
connections are therefore allowed. The simulations diffeink corresponds to two distinct paths of length 1.
slightly from the above random graph model in that the num-  The above path density represents an aggregate over all
ber of links is not a stochastic variable. For lalfye this  nodes and all components. Characterization of path statistics
simulation is faithful to the evolving random graph modelin a component of a given size is achieved pia the den-
because the number of links is self-averaging. sity of paths of lengtH in components of siz& Note the

The simulation results are consistent with the postulatedbvious length bounds €1<k-1 and the sum rul&p;
finite-size scaling form(13). We note that the scaling func- =k°c,, reflecting the fact that there ak8 distinct paths in a
tion W.(£) converges slowly as a function df The simula-  component of sizé (every pair of nodes is connectedhe
tions reveal an interesting behavior of the finite-size scalinglensity of the linkless paths isx=kc,, becauseke is the
function. The functiorc,(N) has a “shoulder"—a nonmono- probability that a node belongs to a component of &ize
tonic behavior compared with the pure algebraic beha@pr We have seen that components and paths form via the
characterizing infinite systentbig. 2). The properly normal- aggregation processé$) and (15), respectively. The joint
ized scaling function(27&%)Y2W(¢) is a nonmonotonic distribution pi k therefore undergoes a biaggregation process
function of ¢ (Fig. 3). Obtaining the full functional form of [28]. In the present case,
the scaling functionV(¢) remains a challenge. A very simi-
lar shoulder has been observed for the degree distribution of
finite random networks generated by preferential attachmenthere the first index corresponds to the path length and the
[24-27. second to the component size. The joint distribution evolves

according to the rate equation

(n,i)+(m,j) — (n+m+1i+j), (18)

IV. PATHS

dpi : .
== - -+ . L) — .
The structural characteristics of components can be inves- dt iﬂ-z:k PniPmj izk(lp“mc]) KAy (19
tigated in a similar fashion. By definition, every two nodes in emel—1

a component are connected. In other words, therepath . . .

consisting of adjacent links between two such nodes. Wd he initial conditions arep, (0)=8y14,0- The first term on
investigate statistical properties of paths in componentsthe right-hand side of Eq19) describes newly formed paths
Characterization of paths yields useful information regardingue to linking. The last two terms correspond to paths that do

the connectivity of components as well as internal structure§0t contain the newly placed link. _ o
such as cycles. We now repeat the steps used to determine the size distri-

For every node in the graph, there mnera”y mu|t|p|e bution. The t|me dependence iS eliminated Using the ansatz
paths that connect it with all other nodes in the respectiveéd x=Pi ‘€™ The corresponding coefficient  satisfy
component. With new links, new paths are formed. For evergh€ recursion
pair of paths of lengthe andm originating at two separate

nodes, a new path is formed as follows: (k=1)Pyy= i+j2:k PniPm; + i;}_;k (iP)GC). (20
nm-—n+m+1. (15) n+m=l-1

In Fig. 1, the linking of two paths of respective lengths The generating functiofP,(z) ==, P, (& satisfies the recur-

=1 andm=2 generates a path of lengthtrm+1=4. Thus, sion relation(1-G)dP,/dz=Z= = -1PyPm+ Py for 1>0. Di-

paths also undergo an aggregation process. However, thiding this equation by Eq(4) yields

aggregation process is simpler than [Et). because the ag- dp,

gregation rate is independent of the path length. == > P.P.+P (21
Let g(t) be the density oflistinctpaths containing links e [CR—)

at timet. By distinct we mean that the two paths connectingfor 1>0. As noted abov@,=kC,, 50 Py(2)=G(2). Solving

two nodes are counted separately. By definitigg(t)=1. . . C o T 3
The rest of the densities grow according to the rate equatioﬁq' (21) recursively givesP, =G, P,=G", etc. In general,
P2 =G"(2). (22

dq
dt = n+mE=I—1 AnGm (16) This sol_ution can _be validated directl_y. The time-dependent
generating function p|(2)=2,p, & is therefore p(2)
for 1>0. The initial condition isg,(0)=6 o. This rate equa- =t"*G"*(z+Int-t). The total density of paths of length
tion reflects the uniform aggregation rate. Another notabley(z=0)=t', coincides with Eq(17) prior to the gelation tran-
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sition (t< 1) because all components are finite. However, the For finite systems, the scaling law for the typical path
total number of paths is reducep,(z=0)=t"17*%, past the length(28) combined with the characteristic component size
gelation time(t>1). (12) leads to the following characteristic path length:

One may also obtain the bivariate generating function

p(z, W) =3 o W% Using Eq.(22) one gets |~ NY3. (29)

G(z+Int-t)
1-wG(z+Int-t)

p(z,w) =t* (23)

One can deduce several other scaling laws and finite-size
scaling functions underlying the path density. For example,
The total density of paths in finite components is of coursesubstituting the gelation time 5~ N~3into the total num-
9=2 kP SOg=p(z=0,w=1). Generally,g=7/t(1-7); for  ber of pathsgg=(1-t)~* yields g~ N3,
t<1, the total density of paths t)=(1-t)"%.

The coefficients are found via the contour integration

P «=(2mi) 1¢dyPy ™ (see the Appendjx Substitutingr V. CYCLES

=I+1 in Eq. (Al) yields P, =(I1+1)K<'"2/(k=I-1)!. As a _ _
result, the density of paths of lengtthn components of size Each component has a certain number of nodes and links.
Kis The complexity of a component is defined as the number of

i Iinkg minus the number of nodes.. Componepts with com-
—(1+1) K 1kt (24) plexity —1 are trees; components with complexity 0 and 1 are
Pk (k—1-1)! ' termed unicyclic and bicyclic correspondingly. Finite com-
) ] » ponents are predominantly trees. We have seen that the over-
Comparing Eqs(24) and (6) we notice that the densities of )| humber of links is proportional tdl and that the overall

the two shortest paths satisfy,=ko and py=2(k=1)c  the number of self-links is of the order unity. The overall
The latter reflects that there ake 1 links in a tree of sizd numbers of trees and of unicyc]ic components mirror this
and that with unit probability all components are tréas  pehavior. Generally, the number of components of complex-
discussed in the next sectjon ity R is proportional toNR (this result is well known; see,

Note also that the longest possible pathk—1 corre- e g. [5,21] and especially{29]). Therefore, it suffices to
sponds to lineafchainlike components. According to Eq. characterize trees and unicyclic components only.

(24), the density of such paths - =t“"'e™. This density Each unicyclic component contains a single cycle. Cycles
decays exponentially with length, so these components argre an important characteristic of a graf0,31. In this
typically small, their length being of order 1. section, we analyze cycles and unicyclic components using

The path length density can be simplified in the largethe rate equation approach. We first note that cycles in ran-
k-Ii_mit by considering the properly normalized ratio of fac- gom graphs were also studied using various other ap-
torials proaches: Jansa82,33 employs probabilistic and combi-

-1 . L - natorial techniques, Marinari and Monasd@&1] assign an
k! :H(l‘J‘> - ox _EJ_+}2 ©o Ising spin to each node and deduce certain properties of
Ki(k=1) -1 k ik 2] 2 loops from the partition function of the Ising model, and
) Burdaet al. [34] modify a random graph model to favor the
= exp(-=17/2K). creation of short cycles and examine the model using a dia-
Using the Stirling formula, in the limitg>1 andl>1, the grammatic. techniq.ue. A number_ of authors also studied
path density becomes cycles on mformatlor_\ networks like the Interngtee[35]
and references thergin

pc=1(2 77_ka)—1/2t|<—1ek(1—t)e—|2/2k_ (25)

As was the case for the component size distribution, the path A. Infinite system
length density is self-similar in the vicinity of the gelation
point, pyx— (1-t)*Py(k(1-t)%,1(1-t)), with the scaling
function

There is a significant difference between the distribution
of trees and unicyclic components. In the thermodynamic
limit, the number of trees is extensive and as a result, it is a

D (¢,7) = 92w Y2 exp(— 77128). (26)  deterministic or self-averaging quantity. The number of uni-

P cyclic components is not extensive, but rather of the order
Thus, the characteristic path length diverges near the gelatiamity; as a result, it is a random quantity with a nontrivial
point, | ~(1-t)™%. distribution even for infinite random graphs. In what follows,

At the critical point, the path length density becomes  we study theaveragenumber of unicyclic components of a
given size or cycle length.

~ 3\-1/2 qypy_ |2
P = 1(27k%) % exp(= 17/2K).. (27) The average number of cycles follows directly from the
It is evident that the typical path length scales as square ro®ath length density. Quite simply, when the two extremal
of the component size nodes in a path are linked, a cycle is born. Let the number of
cycles of sizd at timet be w(t). It grows according to the
| ~ kY2, (28)  rate equation
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dw 1
=0 (30 h(t) =3 1n

- (38)
The right-hand side equals the link creation ratg2i) Below the gelation pointh(t):% In[1/(1-1)], for t<1. The

times the total number of patiég_4; indeed, the total num- total number of unicyclic components can alternatively be
ber of cycles of a given length is of order 1. The cycle lengthobtained by noting thati) it satisfies the rate equation

distribution is dh/dt=33,k%,=3M, and(ii) the second moment of the size
| distribution isM,=(1-t)"* for t<1 as follows from Eq(7).

Wi = r (31) The coefficients underlying the cycle distribution are
"o found using contour integration. Indeed, writing,

=(2mi) ¢ U,y *1dy and substituting =1 in Eq. (A1) gives
In particular, at the gelation point, the cycle length distribu-yy, kzé[kk—l—ll(k_n!] [4]. The cycle length-size distribution

tion is inversely proportional to the cycle lendth| is therefore
w; =207 (32 1 KL
U|’k(t) = _—'tke_kt. (39)
This result can alternatively be obtained using combinator- 2(k=1
ics.

The smallest cyclé=1 is a self-connection, and the average

umber of such cycles g, =(t/2)kc. The largest cycles
sider the joint distributiony, , the average number of unicy- are rings,|=k ang their tldktal( nu)m(l;ker is on gavera;e
clic components of sizk containing a cycle of lengthwith :(1/2k)tké"“ ' K

1=<I=k. This joint distribution evolves according to tkin-

: The largek behavior of the cycle length distribution is
ear rate equation

found following the same steps leading to E25):
duy 4

gt 2Pkt > (e — kuk (33 Uy i(t) = (8rk) " M2kek 112 (40)
i+j=k
This distribution is self-similar in the vicinity of the gelation
for I=1. Initially there are no cycles, and therefarg(0)  transition,u; (t) — (1-t)3®,(k(1-t)2,1(1-1)), with the scal-
=0. Eliminating the time dependence via the substitutioning function

u =V, ke ™ the coefficients satisfy the recursion
®y(& ) = @7 exp(— 77129). (41)

We see that the cycle length is characterized by the same
scale as the path length; (1-t)~. At the gelation point, the
Using the generating functiod,(z) ==&, , this recursion  distribution is
is recast into the differential equatioiﬂl—G)dUMdz:%P,_l.

Dividing by Eg. (4), we obtain

kU= 3Poae+ 2 (U1 (C)). (34)
i+j=k

Uy = (87k3) M2 exp(- 12/2K). (42)

Fixing the component size, the typical cycle length behaves
av, _ ig-t (35)  as the typical path length~ k2.
aG 2 The size distribution of unicyclic components is found

) ) ) ) ) . from the joint distributionv, ==y, . Using Eq.(39) we get
Integrating this equation yields the generating function [21] ’

1
U2 = EG'(Z). (36)

1 k-1 kn—l
v == > — |tke™, (43
2\ n!
Consequently, the cycle length distributi@in finite compo-
nents only is p;=7/2l, in agreement with Eq(31) prior to
the gelation timgt<1).

This distribution can alternatively be derived from tivear
rate equation

Additionally, the joint generating function defined as dvy o
u(z,w)=3, &'y, is given by ot sKee + _Ek(lvi)(JCj) - kvy. (44)
1+]=
uzw) =21n 1 _ (37)  This equation is obtained from E¢33) using the equality
1-wG(z+Int-1) k’c =2 p . It reflects that the linking a pair of nodes in a

o ) component generates a unicyclic component. Integrating Eq.
As for paths, statistics of cycles are directly coupled to sta(42) over the cycle length, the critical size distribution of
total number of unicyclic components of finite-siZe
=3, Uk is therefore vy = (4k)™L. (45)
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3 - - - - - - 1 - - -
o5l ® simulation | e—e N=10"
[In NI/6 o2 0.8 o—oN=10° ]
5l o | —eN=10°
gy 206 ]
15} gy ] 3>
. S 0.4} ]
Py (a\} X
1t °® by 1
[ ]
05le®® " - 02f _
o S e
10" 10' 10 10° 10° 10° 10° n
N

o FIG. 5. (Color onling Finite-size scaling of the cycle length
FIG. 4. The total number of unicyclic components versus theyisiribution. Shown is 2W,(7) versusy obtained using systems

system size at the gelation point. ShowrhigersusN. Each data i, sizeN=10", 1(F, and 16. The data represent an average over
point represents an average oveP Irfilependent realizations. 10° independent realizations.

B. Finite systems

2n\n!

We turn now to finite systems, restricting our attention to w(n,2n) = ( n )E(Z”W- (49)
the gelation point. The total number of unicyclic components
is obtained by estimating(N, ty). Substituting Eq(12) into  There ard®") ways to choose the nodes participating in the
Eqg. (38) shows that the average number of unicyclic compo-cycle and the next term is the number of ways to arrange
nents (and, hence, cyclgsgrows logarithmically with the them in a cycle. The corrective facton 2ccounts for rota-
system sizdFig. 4): tion and reflection symmetries. The last term is the probabil-

h(N) ~ % nN. (46) ity that eac_h pair of .corllsecutive nodes are linked. The large-
n asymptotic behavior is

Comparing the path length distributi@®7) and the cycle
length distribution(42), we conclude that the characteristic
cycle length and the characteristic path length obey the same
scaling lawl ~ N3, This implies that the cycle length distri-
bution in a finite system of sizBl, w;(N), obeys the finite- Therefore,w(n,2n) ~exp(—-CN). Substitutingl ~N into the

w(n,2n) = é<g>n (50)
v2n\e

size scaling law scaling form (47) leads to the superexponential behavior
. —C3/2)- ;
w;(N) ~ N_1/3\I’W(|N_1/3). (47) W (7) ~exp(-Cn 2): see Fig. 6.
Numerical simulations confirm this behavig¥ig. 5). 10°
In the simulations, analysis of cycle statistics requires us
to keep track of all links. Cycles are conveniently identified —— N=10'
using the standard “shaving” algorithm. Dangling links—i.e., —— N=10°
links involving a single-link node—are removed from the y —— N=10°
system sequentially. The link removal procedure is carried 10 ¢ E

until no dangling links remain. At this stage, the system con- £
tains no trees. Simple cycles are those components with an Bf
equal number of links and nodes. =

The extremal behaviors of the finite-size scaling function o 102 ¢ 1
are as follows: N
\\
@™, 7—0, N
N4 == 48 X
w7 {GXF(— C7]3/2), n— 0. “48) 3 =

The smallyy behavior follows from Eq.(32). Statistics of 0 5 10
extremely large cycles can be understood by considering the
largest possible cycles. When there areN/2 links, the
largest possible cycle has lengieN/2. Its likelihood FIG. 6. (Color onling The tail of the scaling function. Shown is
w(n, 2n) is obtained using combinatorics: 27, (7) versusy®2.
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N

FIG. 7. The average cycle size at the gelation point. Shown is FIG. 8. (Color onling The distribution of the number of cycles.

{I(N)>h(N) versusN. Each data point represents an average over 10Shown iss, versusn at the gelau_on _pomt. The system sizeNs
independent realizations =1 and an average over 10@ealizations has been performed. A
' Poissonian distribution with an identical average is also shown for

) i reference.
Typically, cycles are of sizé&\*'°. The average moments

A(N)Y=2lw(N)/Z,w;(N) reflect this law. However, the alge-

braic divergencev, ~ 17! leads to a logarithmic correction as ds =-Js. (53)
follows from Eqs.(46)—(48): dt
The initial condition issy(0)=1. As a result, the survival
(I"(N)) ~ N™3[In N2 (51)  probability is
So(t) = (1 -2 (54)

The behavior of the average cycle length is verified numeri-

cally (Fig. 7). for t<1. The survival probability vanishes beyond the gela-
Finite-size scaling of other cycle statistics such as theajon point, s,(t)=0 for t>1. This reiterates that in the ther-

joint distribution can be constructed following the same pro-modynamic limit, a cycle is certain to form prior to the ge-

cedure. For example, the size distribution of unicyclic com-jation transition[5].

ponents should follow the scaling form Since the number of cycles produced is of order 1 in the

pre-gel regime, one may expect that the statistical properties

of cycles strongly depend on their generation number or al-

ternatively on their creation time. This is manifested by the

first cycle. The quantitglts, dw/dt is the probability thati)

the system contains no cycles at tim€ii) a cycle is pro-

duced during the time interval, t+dt), and(iii) its length is

I. Summing these probabilities gives the probability that the

o ) . first cycle produced sometimes during the pre-gel regime has
The above statistical analysis of cycles characterizes thpngthl:

average behavior but not necessarily the typical one because
the number of cycles is a fluctuating quantity. There are nu-

merous interesting features concerning cycles that are not
captured by the average number of cycles. For instance, what
is the probability that the system does not contain a cycle upumming these quantities, we verify the normalization

Vi(N) ~ N2 (kN273). (52)

The scaling function diverge¥ (&)= (4¢)™* for £—0.

VI. FIRST CYCLE

1 1
dw 1 _
f :f dtso—:—f dt(1 -t)V4'1. (55)
'), Pdt 2),

to time t? It suffices to answer this question in the pre-gel 1t
regime as the giant component certainly contains cycles. > = —f dt(1 -t 2=1.
Let sp(t) be the(survival) probability that the system does =1 2Jo

not contain a cycle at time The cycle production rate i$ e . :
_ _ = s _ The length distribution of the first cycle can be expressed in
=dh/dt=1/2(1-t). The number of cycles is finite in the pre terms of theg function f|:§B(3/2,I) or, alternatively,

gel regime, since cycles are independent of each other in the
N— oo limit. This assertionsupported by numerical simula- ~ Jar IX()
4 T(1+3/2)°

tions; see Fig. Bimplies that the cycle production process is 1= (56)
The probability distributiorf, has an algebraic tail,

completely random. The cycle production rate characterizes
the survival probabilitys, as follows:
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1 ——— 10° : : : . . .
N—1/6
08 . ® simulation
06 r
n \ o
0.4 r — n=0 (&-
—— n=1 ‘
— n=2 —1
0.2 — n=3 10
°0 02 04 06 08 1 A A amt 105 1
- - ' ' 10° 10" 10 10° 10* 10° 10°
t N
FIG. 9. (Color onling The cumulative distributionS,(t) FIG. 10. The survival probability versus the system size. Shown
=2g<j=nsj(t) versust for n=0,1,2,3. is so(N) versusN at the gelation point—i.e., wheN/2 links are
placed. Each data point represents an average oYaeabzations.
fi=CI7372, (57)
— n-1
with C=+v7r/4 for |>1. The tail exponent characterizing the fr~ 1 |—3/2{1 In |] ) (61)
distribution of the first cycle is larger compared with the " (n=1)! 2

exponent characterizing all cycles, reflecting the fact that th
first cycle is created earlier.

Similarly, one can obtain additional properties of the first
cycle. We mention the probabilitly, that the first unicyclic
component has size

?ndeed, summation over the cycle generation reproduces the
overall cycle distribution32).

In finite systems, it is possible that no cycles are created at
the gelation time. This probability decreases algebraically
with the system size, as seen by substituting(E8). into Eq.

1 k 54).
Fe= f dt%%kzck = }k_|k, (58) ( )
0 2Kk! s~ N8, (62)
with the integrall, = [odt(1-t)*2*"%e™. This integral can be  This prediction agrees with simulations: see Fig. 10. In prac-
expressed in terms of the confluent hypergeometric functionjce, this slow decay indicates that a relatively large system
Its asymptotic behavior can be readily found by noting thaimay contain no cycles aftét/2 links are placed. Generally,

the integrand has a sharp maximum in the regiont 1-the probability that there is a finite number of cycles in-
~k*2, leading tol, = 2""*T'(3/4)k~3"%e7. Using this in con-  creases with the number of cycles:

junction with the Stirling’s formula, the size distribution has
the algebraic tail 1 _1,6{ 1 N}”

Sy~ n—N 6 In . (63)
F=Ck™", (59)

i —o-T7/4_-1/ s h ‘
with C=2""" ZF(S/A.D for k>1. o by the same ~ N3 size scale as does the overall cycle dis-
Under the assumption that cycle production is Complete%ibution. We focus on the behavior of the moments:

random, the number of cycles obeys Poisson statistics. The

probability that there aren cycles, s,, then satisfies the (") ~ NV3-1/6, (64)
straightforward generalization of Eq53)—viz., ds,/dt

=J[s,-1—S,] with the initial conditions,(0)= 4, ,. The solu- This behavior is obtained from the distributiqgs?7) that
tion is the Poisson distributios,=(h"/n!)e™ see Fig. 8. should be integrated up to the appropriate cutoff—kE),

The length distribution of the first cycle is characterized

Explicitly, the distribution reads ~[ 2‘1/3dllnl‘3’2. As a result, the average size of the first cycle
1/2 " is much smaller than the characteristic cycle gize- NV
a-p*#1 1 . : . .
S, = Zln i (60) Moments corresponding to the size of the first unicyclic
n! 2 1-t component grow as follows:
.'I'hE'cugnulative distributior,(t) =sy(t) + - - - +s,(t) is plotted (K" ~ N2V3-1/6 (65)
in Fig. 9.

The Poisson distributiof60) can also be used to calculate as obtained from Eq59). Consequently, the average size of
fn, the size distribution of thath cycle. We merely quote the the first unicyclic component is smaller than the characteris-
larged tail behavior tic component size(k) ~ N2,
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VII. CONCLUSIONS example, polymerization with a sum kerngl7]—and in
other variants of random graphs such as small-world net-

In summary, we have extended the kinetic theory descrip\—NOrks [37] can be analyzed using kinetic theory

tion Of. random' gr_aphs to structures $UCh as paths and cycles. One could try to utilize kinetic theory to probe the distri-
Modeling the linking process dynamically leads to an aggrey,

) ? tion of various families of subgraphs. We have limited
gation process for both components and paths. The den3|ty %ﬁrselves to cycles since they, alongside with trees, do ap-

paths in finite components is coupled to the component siz ear in random graphs while more interconnected families of

e e e e 120 ubgraphs are vey rafes]. Yet n bilogicl and techno-
y P P y ‘?ogical networks certain interconnected families of sub-

equations. Both path and cycle length distributions are e
cgupled 10 the corgponent sizgdistribu%ion graphs do appear. Such po_pulated _famllles of s_ubgraphs_, mo-
Generallv. sive distributions deca ex.onentiall awa tifs, are believed to carry information processing functions

Y S . Yy expor Y .y[38,3q. It will be interesting to use kinetic theory to analyze
from the gelation point, but at the gelation time, algebraic

tails emerge. As the system approaches this critical point, thrgotn‘s In special random graphs.

size distributions follow a self-similar behavior characterized ACKNOWLEDGMENT
by diverging size scales. )

The kinetic theory approach is well suited for treating 1 MS research was supported by the U.S. D@Eant No.
infinite systems. The complementary behavior for finite sys-W'7405'ENG'36'
tems can bg obtaineq from heuristic sca_lling arguments. '_rhis APPENDIX: CONTOUR INTEGRATION
approach yields scaling laws for the typical component size,
path length, and cycle length at the gelation point. These LetA(z)=2,A&“ be the generating function of the coef-
scaling laws can be formalized using finite-size scalingficients A,. For the family of generating functions\(z)
forms—i.e., self-similarity as a function of the system size,=G'(2) with G(2) satisfyingGe ©=¢? the coefficient# can
rather than time. Obtaining the exact form of these scalindpe obtained via contour integration in the compieplane
functions is a nice challenge in particular for the most fun-wherey=¢e* as follows:
damental quantity, the component size distribution that is

i \ - ’ 1 G’ 1 glk+)G dy
characterized by a nonmonotonic scaling function. A= — Y = _jQ — =
The kinetic theory approach seems artificial at first sight. = 2 y 2mi G*" dG
Indeed, graphs are discrete in nature and therefore combina- 1 gk+nG
torial approaches appear more natural. Yet once the rate =—OdGC— (1 -Ge©
equations are formulated, the analysis is straightforward. Uti- 2 G
lizing the continuous time variable allows us to employ pow- 1 K" ) »
erful analysis tools. Moreover, some of the kinetic theory = —35 dGD) —(G™k-GM1H
. - 27 h Nl
results are less cumbersome compared with the combinato-
rial results. Krr-1
The same methodology can be expanded to analyze other = f(k_ E (A1)

features of random graphs. For example, correlations be-

tween the node degree and the cluster size can be analyz&ihceGe ©=¢ it is convenient to perform the integration in
using biaggregation rate equatiof&6]. It is quite possible the complexG plane. In writing the third line, we used
that structural properties in other aggregation processes—faty/dG=(1-G)e °.
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